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Abstract

Steganography is hiding a secret message within another message. With the
recent rise of popular streaming services, we intend to hitch a ride on them to
send obfuscated messages over the internet. In particular, we use deep learning
steganography to achieve this. In this paper, we investigate the use of correlation
loss on a deep neural network to encode a message to embedded images and apply
this pipeline to a real-world scenario. We test our neural network with a wide
range of inputs: images, texts, and HTML files and analyzed the performance of
the model with different settings. We found that while prior works are mostly
replicable, they only hold up in the natural image domain. It is quite non-trivial to
use the CovertCast method and be able to recover the binary after quantization.

1 Introduction

Recently, the fast and vigorous development of the internet has facilitated the rise of the live stream
industry. Millions of people watch live streams on popular platforms like Google Live and Twitch.
Some existing techniques of circumventing internet censorship are not enough such as those by
McPherson u. a. (2016) who created a method to transmit data through encrypted live-stream videos
using a model called CovertCast. The key idea is to evade censorship as long as any (foreign) video
streaming service is permitted in such a country. CovertCast videos will "hide" among the myriad
of legitimate live streams. Most streaming services will use encryption. In particular, YouTube’s
streaming protocol seems to use fixed-sized packets. Thus it isn’t easy to detect the use of CovertCast.
However, this paper does not consider the possibility of social engineering or an arrangement between
the streaming service and the censoring country to block CovertCast. To a human, it is very obvious
(see appendix) that CovertCast is being used. Thus this puts users in danger if their country’s
intelligence agency can correlate them to have watched a CovertCast live stream. Another possibility
is collusion or a complete buyout of the streaming service by the censoring country. The streaming
service might agree to block CovertCast or noise-like videos in exchange for business in the censoring
country. Our work acts as a first step towards making it impossible to detect if a video contains
a secret message. Such technology will have the effect of forcing every country to either allow
any data or block videos entirely. The main contribution is to a) analyze the use of correlation
loss (section 3.4), b) investigate the use of noise on Stegnet Wu u. a. (2018), and c) apply Stegnet
steganography to ConvertCast. We hope in the future that once this field has matured, that we will
be able to send realistic data over live streaming platforms. We’ve published our source code here:
github.com/chromestone/Stegnet-Covertcast

2 Related Work

The fast development of the internet and multimedia has greatly facilitated video steganography.
Besides the traditional information embedding method, deep learning also plays a significant part
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Figure 1: StegNet Architecture Overview

in this process. In this section, we will explore the three types of video steganography. There are
three types of video steganography, based on how the information is embedded Liu u. a. (2019):
pre-embedding, intra-embedding, and post-embedding.

Pre-embedding, as suggested by the name, happens when the video is still in raw format and then
the sender compresses the video along with the hidden message. The characteristic of this method
is that it has high capacity and it’s simple but hard to prevent steganalysis. To add an extra layer of
security, Cheddad u. a. (2008) includes the RSA algorithm in the pipeline. Kanade-Lucas-Tomasi,
a widely-known technique for object tracking, is been used to encode secret messages Mstafa und
Elleithy (2016). This method exhibits a good capacity to encode but it’s very complex. In recent
years, mature AI models are also used in downstream steganography tasks. Mstafa und Elleithy
(2015) identify region of interest (ROI) using a face detection and tracking model and then perform
embedding in that specific area, increasing the security of the message. Generally speaking, pre-
embedding methods do not depend on the video coding processing or the encoding method. With
modern techniques, more information can hide in the video more securely. However, the cost of this
method is that it’s time-consuming and may suffer information loss.

The intra-embedding type describes the embedding that occurs in the compressed domain. A major
advantage is that videos generally are stored as compressed versions. However, with modern video
coding techniques, such as H.26X, the redundant part of the raw video has been greatly compressed.
Recent publications He und Luo (2008); Fang und Chang (2006) focus on using motion analysis,
specifically motion vectors, to encode part of the video. By manipulating the motion vector of the
video or the search process, secret messages can hide in the video.

Last but not least, post-embedding video steganography encodes messages directly into the bitstream
of a video. It’s not computationally achievable to encode the whole bitstream so most of the post-
embedding methods only take a fraction of a video. A downside of this method is that it depends
on the video compression method. Shahid u. a. (2011) uses Context-adaptive variable length coding
(CAVLC). Xu und Wang (2015) designs the pipeline based on context-adaptive binary arithmetic
coding (CABAC).

As far as deep learning steganography goes, there has been work in both hiding bits directly in images
using CNNs Tang u. a. (2019) and works on hiding images in images using CNNs Baluja (2017); Wu
u. a. (2018). In the works by Tang u. a., they look into hiding bits in images by dividing the image
into common sections and adjustable sections. We found this paper hard to understand for someone
not in the steganography field. Hence, we pivoted to Baluja and Wu u. a.’s work which seemed for
intuitive. Baluja proposed a three model network: one to "prepare" the secret image, one to encode
the prepared image into a cover image, and, finally, a decoder. However, Wu u. a. showed that a two
model network composed of an encoder and decoder is possible. Hence, in the interest of time and
practicality, we chose Wu u. a.’s architecture. This had the added benefit that they had not analyzed
their model on some settings that Baluja did.
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3 Method

3.1 Model Architecture

Following Wu u. a. (2018)’s design, we modify the first part of the network. However, there was a
discrepancy between their paper and the code. In their paper, they included batch normalization and
the ELU activation at the ends of the encoder and decoder model. However, we found that this was
not the case in their code. We believe that using the raw outputs of the CNN makes more sense as the
outputs need to be negative to match the normalized ground truth (cover and secret) images. Thus,
we proceeded to terminate our encoder and decoder at the final convolutional layer.

A second discrepancy was that skip connection were implied by the "Separable Convolution with
Residual Block" figure in their paper to be applied after the ELU activation. In their code, the
skip (addition operator) was before the ELU activation and the tensor added also came from the
pre-activation of the previous layer. Since the skip connections did not reach the end of the model,
we did not deem this worthy of our time to investigate.

The only modification that we made was to remove the skip connection stemming from the model
inputs (concatenation of cover and secret images in the encoder case and the embed images in the
decoder case). In Wu u. a. (2018) code, this skip connection allows the second layer to access such
inputs. We thought this was strange since the inputs do not need any gradient. Their implementation
also applied batch normalization and ELU to the model inputs before any convolutions were applied.
Although it’s arguable that this removes the model’s ability to easily learn the identity for the first
layer, we decided to remove the first skip connection, batch normalization, and activation.

To summarize, our model is composed of an encoder and decoder with the same architecture. The
encoder expects 6 input channels (the concatenation of cover and secret) and the decoder expects 3
input channels. The architecture has 6 separable convolutions (with 5 skip connections) followed by
2 normal convolutions.

<html> … </html>

Encoder

Hidden/
Secret Cover Quantized Embed

Decoder

Decoded

CovertCast method

<html> … </html>

CovertCast method

Figure 2: Our model/pipeline with examples from the HTML dataset. First, the HTML is treated as
binary and converted to an image using CovertCast method. Second, the secret image is concatenated
with a cover image from the Tiny-Imagenet dataset and fed through the decoder. This generates the
embed images which are quantized before transmission (e.g. over the internet). Lastly, the decoder
extracts the secret image from this embed image and the CovertCast method recovers the HTML.

3.2 Datasets

We used four different inputs for the model: Tiny-Imagenet-200 Li u. a. (2016), HTML files, Shake-
speare text dataset, and random dataset.

Tiny-Imagenet-200 is a small subset of the ImageNet dataset Russakovsky u. a. (2014). It contains
200 classes. This small image dataset makes our training fast and efficient.

For the HTML files data, we retrieved the Top 200 websites from the internet and only saved the raw
HTML file. However, not all 100 websites responded and some responded with the correct encoding.
We only allowed ’utf-8’ and ’iso-8859-1’ encodings to keep it simple. During the training process,
we encode the raw HTML file into the cover image using the CovertCast method we detail later.

We obtained our Shakespeare dataset from Karpathy (2015) from his Char-RNN project. We chose
Coriolanus for validation and King John for test. This was simply because they were at the ends of
the file which made splitting easy and that they were short enough so that we’d have most of the data
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to train. While looking through this dataset, we found that there were some omissions. This most
likely did not affect our results as our data generation method yielded millions of examples with only
4MB of data.

To create the random dataset, we first created a tape of 0’s and 1’s (with equal probability of 1/2) with
a length of the number of examples in the Tiny-Imagenet training set (100000) plus the number bits
per image (6144 = 32 * 32 * 6). This then allows us to use a sliding window approach of moving
along the tape 1 bit at a time to generate a random hidden image for each Tiny-Imagenet example.

3.2.1 CovertCast Encoding and Decoding

To encode binary into images and images back into binary, we used the method proposed from the
paper CovertCast McPherson u. a. (2016). Given an array of bits A, we encode two bits into each
channel of a pixel using the formula 160×A[i] + 32×A[i+ 1]. Thus, we can encode 6 bits into a
single RGB pixel. However, in order to make this image robust to noise, we upscale the image using
nearest neighbor and we call this the "six bit resolution". For instance, when the six bit resolution
is 2 × 2, each 4 RGB pixels represents 6 bits. Therefore, for a 64x64 image, we can theoretically
encode 6144 bits or 768 bytes.

As it turned out, there was an error in their pseudocode. Upon closer inspection of their paper, we
found that they probably intended to write 32 + 128×A[i] + 64×A[i+ 1]. However, we found this
out too late after we had trained all of our models. Regardless, this did not hinder us from recovering
the binary data for our end to end model. We simply recovered the bits by mapping values of range [0,
16] to 00, (16, 96] to 01, (96, 176] to 10, and (176, 255] to 11. Later we’ll discuss that it’s possible
that this could affect our results for quantized embeddings.

3.3 Training Setup

All experiments are trained on NVIDIA RTX 3090 GPU with the same configuration. Specifically,
models are trained with a batch size of 64 for 100 epochs. We used Adam as optimize with all default
parameters. All input data are normalized.

For the HTML dataset, we introduced two modifications to simulate transmission in the real world.
First, we reserved 1 byte per example to be a sequence number (that wraps around on overflow). The
idea was that the receiver would take screenshots of the broadcast at a higher frequency than the
broadcaster’s frame rate. This would create duplicate frames which could be easily removed by a
small sequence number (which would be robust to edge cases such as data with repetition).

Second, we zeroed out a random amount contiguous pixels in the flattened image. The amount to
zero out was picked from a uniform distribution between 0 and 1/4 of the number of pixels. The idea
was to simulate the 0 byte padding that would occur at the end of a transmission.

3.4 Loss Function

All models have trained with two sets of loss functions: the image difference loss function and the
combination of the image difference loss and correlation loss. In this section, we will explain and
explore the two loss functions.

3.4.1 Image Difference Loss

We used the same loss as the Wu u. a. (2018) did in their paper. Specifically, we want to use this
loss to minimize the difference between the cover image and the embedded image and the difference
between hidden and decoded images. Here we define symbols for Cover Image (C), Hidden Image
(H), Embedded Image(E), and the Decoded Image(D). The loss measures the difference between
the embedded image the cover image LCE and the loss between the hidden image and the decoded
image is LHD. Furthermore, they include the variance between the images to encourage the model to
distribute the loss (or the encoded information) evenly across the image, instead of clustering on one
location. Therefore, the weighted loss function is:

loss = LCE + LHD + V ar(LCE) + V ar(LHD) (1)

In this paper, we will use Hidden and Secret interchangeably. They both refer to the image H.
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3.4.2 Additional Correlation Loss

As discussed in the paper Baluja (2017), what if the decoder has access to the original, unmodified
cover image? The authors explore the consequences when someone has access to the original cover
image by simply calculating the difference between the original cover and the container (encoded
image). At 20X enhancement, the residual revealed the feature of the secret image. To combat this,
Baluja (2017) designed correlation loss that measures the pixel-wise correlation between the residual
and the secret image, denoted:

corr := covariance(C − E,H)/
√
V ar(C − E)V ar(H) (2)

Minimizing this loss would reduce the relationship between the Cover Image and the Embedded
Image. Therefore, the final loss function would be equation 1 + equation 2.

losscorr = LCE + LHD + V ar(LCE) + V ar(LHD) + abs(corr) (3)

The downside of using this loss function is that the quality of the decoded image has dropped.

4 Experiments

4.1 Experiment Analysis

We have 8 experiments in total. For each input (Imagenet, Random, Shakespeare, HTML), we trained
two types of losses: Image Difference Loss and Image Difference Loss + Correlation Loss. Figure
5 is the log mean squared error between the cover and the embedded image. Note that we did not
optimize on this metric. We are only taking the log because we are often dealing with numbers
smaller than 10−3. While it’s meaningless to compare the result across different inputs, it’s worth to
take a look at the performance between the two loss functions. Although correlation loss reduces
the possibility of exposing the secret when someone has access to the original cover image, we can
clearly see that the correlation loss increases the loss. There are two possible hypothesis for this:
a) The model needs to learn a more complex function. For a set capacity, the model that is the
least constrained will perform better. b) The encoder introduces noise which decreases downstream
decoder performance.
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Figure 3: The log MSE difference between secret
and decoded image.

Log MSE

D
at

as
et

Imagenet

Random

Shakespeare

HTML

-1.5 -1.0 -0.5 0.0

Loss Loss + Corr

(Quantized Embed) Secret Log Mean Squared Error

Figure 4: The log MSE difference between secret
and the output of the decoder run on quantized
embed images.

Figure 3 shows the performance of the model, as it measures the difference between the secret and
the decoded image. Figure 4 is the graph for log MSE on quantized embedded images, providing less
accurate results. In other words, it shows that the model has trouble recovering the secret from the
embedded image when it’s perturbed even a little bit. The model’s sensitivity causes it to performance
worse on quantized embeds. As shown in the graph, the pipeline does a good job of recovering
Shakespeare’s text (the longer, the better), but it does not perform as well in terms of image and
HTML recovery. One noticeable factor is that a small change in the decoded image will not impede
the human understanding of an image. It’s not the case when it comes to HTML files. As shown in
figure 6, the recovered HTML text is not comprehensible.
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Figure 5: The log MSE difference between cover and embedded image. We used a log scale because
the MSEs were less than 1. A longer bar is better because the log MSE is more negative.

Figure 6: Comparison between the secret message and the recovered message for the HTML model
trained without cross correlation.

Finally, we tried to send our encoded stream to Youtube Live, but we failed to do so as the 84% bit
accuracy is not enough for a naive decode and broadcast implementation. We will discuss more
regarding the real-world application in the discussion section.

4.2 Result Analysis

In figure 7, we display one set of example cover, embedded, secret, and decoded images along with
their feature in the frequency domain. We converted all four images via fast Fourier transform (FFT)
using the discrete Fourier transform.

As shown in the graph, the embed image contains mostly low-frequency features. (It’s faint but it
looks like high frequency components in green appear less in the embed FFT compared to the cover
FFT.) Also the vertical feature of the embedded image is more observable. There is a minimal change
between the FFT graph of the secret image and decoded image – more low-frequency appears.

If someone has access to the embedded image without access to the cover image, it’s not likely for
them to recognize the embedded image as an encrypted one. Besides a slight color shift for the secret
image, the decoder is able to preserve the original shape and texture of the secret image. Also, it’s
intriguing that the model learns to preserve the structure of the cover image while using color to code
for the secret image.

The last column of figure 7 is a departure from the results of Baluja (2017). In their work, the simple
difference between the cover image and the embedded image reveals the shape of the hidden one. It’s
curious that this is not the case for the architecture of Wu u. a. (2018). It’s possible that the use of
separable convolutions has a role in this discrepancy.

Many previous papers Xu und Wang (2015); Wu u. a. (2018); Fang und Chang (2006) measured their
performance through the receiver operating characteristic (ROC) curve. We provided a similar graph
10 to our experiments. The thick green line refers to a model that randomly guesses on the dataset.
Since all of our models are close to this line, this means that the detector StegExpose is unable to
accurately detect encrypted images. This is surprising as Wu u. a. (2018) had shown StegExpose to
have an accuracy somewhat better than random guessing. Shakespeare is the one that’s closest to the
random guessing line.
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Interestingly, the ROC curve shows evidence against our initial hypothesis that correlation loss would
minimize detection. Although this difference is very small, it could be due to the encoder purposefully
adding noise to minimize correlation. Ironically, StegExpose could be picking up on this noise (meant
to de-correlate the secret) as evidence of the image being suspicious.

Cover Embed Cover FFT Embed FFT Absolute(Cover - Embed)

Secret Decoded Secret FFT Decoded FFT Absolute(Cover - Embed) FFT

Figure 7: Concrete example from the Imagenet baseline model (without correlation loss). The cover
and secret images were concatenated along the channel dimension and fed through the encoder to
obtain the embed. The embed is fed through the decoder to obtain the decoded image.
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Figure 8: The bit-wise accuracy between the
ground truth binary and the data extracted using
the CovertCast method on the decoded image.
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Figure 9: The bit-wise accuracy between the
ground truth binary and the data extracted using
the CovertCast method on the decoded image out-
putted by the decoder run on quantized embed
images.

5 Further Discussion

We can see that for real data, the correlation loss generally increased both the cover and secret
MSE loss. This is interesting because we had initially hypothesized that the correlation loss would
encourage the model to learn an embedded image closer to the cover image but with a lossier and
more complex encoding for the secret. Instead, it seems that the model has introduced noise to
decorrelate the embedding-cover residual from the secret.

One conclusion is that since the correlation loss appears to make the embed images noisier, the
decoder is trained to be more robust to noise. This can explain the quantized embed secret loss for
Figure 4. While the secret MSE loss is generally greater on quantized embeds compared to its end to
end counterpart, the models trained using correlation loss are less affected due to having seen noisy
inputs.

According to Figure 9, the random and Shakespeare models trained on correlation loss had an
accuracy of about 88%. The approximately 6% accuracy drop found in the HTML model trained with
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Figure 10: The receiver operating characteristic (ROC) curve for StegExpose on our models.

correlation loss could be due to using random 0 images (to simulate padding in real transmissions).
However, since the base loss models for Shakespeare and HTML both performed equally well, this
could be due to the data. It could also be a combination of these two including other factors not
yet considered. Furthermore, it’s not clear why in Figure 8 that the accuracy is nearly 100% for all
models except for the HTML correlation loss model. Further investigation is warranted.

One potential solution for increasing accuracy with quantized embed images is to simply create a new
dataset from the outputs of the encoder. Then we can finetune the decoder on the quantized encoder
outputs.

Another area that should be fixed is the lopsidedness of the encoding. We reserve only 17 values to
represent 00 while reserving 80 values to represent 01. This imbalance gives the model less room
to work with (and does not match our loss function which weighs error in both directions equally).
Keep in mind that this was due to an erro in the McPherson u. a. (2016) paper. The simplest solution
is to re-adjust the CovertCast encode/decode functions and re-train the models.

6 Conclusion

Overall, our work is a departure from previous works in that we analyze the ability to encode arbitrary
binaries in images (albeit naively) using deep-learning steganography methods. We’ve shown that
while previous works are promising, there are still ways to go for hiding images produced by a
binary-to-pixel encoding, and application on real-world streaming services.

We implemented the model with 2× 2 six bit resolution. In the future we could try extra redundancy
all the way up to 8× 8 six bit resolution used originally by McPherson u. a. (2016). However, this
would require more training time as we’d need bigger images to encode the same number of bits.

Another possibility is to add another model into the pipeline: optical character recognition (OCR).
Then we could simply render text into images. Our models have been shown to preserve shapes better
than color. It’s possible that all of this could be totally unnecessary and that we can just simply use
the long tried and tested error correction codes.

Finally, we have mostly focused on increasing robustness or accuracy in this section. Correlation
loss is interesting in that it attempts to decrease the presence of the secret image by preventing linear
relationships. However, this doesn’t consider quadratic or other non-linear encodings. Thus, the
correlation loss is an idea that naturally leads to using Generative Adversarial Networks. This would
have been an excellent approach but we were worried about the difficulty of training them.
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Figure 11: Simulated CovertCast Image (Their code was so old that it did not work anymore.)
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